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ABSTRACT
For several years the Science, Technology, Engineering and
Maths (STEM) fields have been growing and continue to
grow rapidly. Recent reports in the United States show
that growth in STEM employment has increased to 1.7%
per year, while non-STEM positions grew by 0.6% per year
during the same period of time [8]. Efforts have been made
to encourage people to pursue a career in STEM fields. Nev-
ertheless, the provision of the skills students require to be
capable of pursuing a STEM career starts earlier than col-
lege. In fact, students need to be trained from middle school,
as it is then that students make their choices [14]. Thanks
to the increasing adoption of educational software, detecting
students’ problems with maths and science subjects has be-
come more efficient. And more recently, models using data
gathered from an Intelligent Tutoring System have become
capable of predicting STEM or non-STEM college major en-
rollment [14]. In this paper, we focus on predicting STEM
field career choice using longitudinal data from an Intelligent
Tutoring System. We investigate if comparing student data
to that of their peer school-mates can improve the prediction
models. We find that aggregating student levels within the
same schools improves prediction models and leads to better
AUC scores (0.601) compared to models using student data
without this school-based transformation.
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1. INTRODUCTION
Science, Technology, Engineering, and Mathematics (STEM)
fields are regarded worldwide as the building blocs for a
nation’s economy. Yet for several reasons, the number of
open positions does not match the number of workers ready
to take these positions. In fact, just in the United States,
employment related to STEM occupations has grown a lot
faster than for other non-STEM occupations. Over the last
decade, STEM occupations have increased by 24.4% com-
pared to ”only” a 4% increase in non-STEM occupations [8].
However, STEM positions require the candidates to have
appropriate STEM skills that are acquired in the course
of completing a STEM degree or from advanced technical
training. Thus, educating pupils in STEM majors and en-
couraging them to continue their studies are important steps
toward filling the need for a STEM workforce which is con-
stantly and rapidly increasing.

Previous research showed concern about student enrollment
and retention in STEM fields when they get to college [22].
In fact, this can be explained by the individual choices made
during one’s academic career, more specifically during high
school [14]. Many factors can influence student decisions.
For instance, the financial situation of students plays a big
role in their future enrollment [9]. Furthermore, quite often,
students are influenced by their parents, whether directly or
indirectly. That’s why the education of parents has been in-
vestigated as a factor influencing students’ higher education
choices and outcomes [12].

External factors can impact personal choices, but stronger
effects are more associated with academic success, profi-
ciency in Maths and Science subjects and student’s self-
assessment of their level [19, 20]. These kinds of factors can
be detected early, not only in high school but also in middle
school. It is during this period that students acquire the nec-
essary skills to help them prepare for college. Depending on
their learning experience, students start to build their self-
beliefs, objectives and career aspirations. Throughout their
learning journey in middle school, they find themselves more
engaged in or disengaged from the learning process at school,
either starting to think about academic success and improv-
ing grades or becoming more disengaged and deviating from
the track of academic success [18, 4].

Since integrating into a STEM career is closely related to
graduating with a STEM major [22], the difficulty of re-
sponding to the growth of STEM positions is highly sensi-
tive to the numbers of students enrolling in STEM majors.
Continuous efforts have been made to increase STEM en-
rollments. But the promotion of the pursuit of a STEM ma-
jor has to begin as early as middle school for two reasons.
Firstly, the foundation of knowledge required in STEM fields
is acquired during the years in middle school and high school.
Secondly, very often, student decisions are still easily man-
ageable during middle school, when it is possible to build
their confidence in being able to pursue a STEM major [20].
That’s why it is necessary to distinguish students who have
difficulties and who are most likely to loose interest in STEM
fields. These students need more support in order to help
them overcome their problems and reignite their interest in
STEM fields. Several detectors can indicate which students
are most likely to pursue STEM college majors. Factors like
family background and financial situation [12, 9] have an in-
fluence but they are not easily remediable. While student
academic performance is a very strong indicator, it is too



late to adjust the student’s treatment, and teachers can no
longer intervene, by the time a student finishes high school
[6]. These detectors rely heavily on student grades and on-
field observations. Thus, teachers find it difficult to identify
problems and consequently to apply the appropriate type of
support.

In a hopeful sign, the adoption of educational software has
been expanding within different academic institutions in re-
cent years. The utilization of this kind of software allows
educators to gather data about student usage. The recorded
data is fine-grained and relative to every student action
within the system, opening up possibilities for extensive
analysis, and ultimately growing into substantial sub-fields
such as Educational Data Mining and Learning Analytics.
With a large amount of data at hand, it became feasible to
build predictive models capable of detecting student affects
across a wide range of constructs such as gaming the system,
boredom, carelessness, frustration, and off-task behaviours
[2, 1, 17, 11, 16]. These affect detectors were the building
blocks for subsequent research work that aimed at predict-
ing learning outcomes [11], college enrollment [18] and more
importantly predicting whether or not students will enroll
in a STEM major in college [14].

The objectives of this research are two-fold. Firstly, we are
building models for longer-term prediction as to whether
or not students will pursue a career in STEM fields. For
that, we use data gathered from a longitudinal study, over
a decade long, featuring click-stream recorded data of mid-
dle school student interactions with an Intelligent Tutoring
System for mathematics called ASSISTments. Secondly, we
are investigating how school-aggregated data of student fea-
tures can improve the model’s correctness. For that, we
measure the z-score for each student feature relative to his
peer school mates. We call this approach the school-based
approach, and we compare it to the normal approach, where
no school-based feature transformation is done. We also dis-
cuss which features of affects, performance and behaviours
are good predictors, at the same time, we introduce the us-
age of genetic programming to the process of finding the
best machine learning pipeline for each approach. Finally
we analyse the outcomes and compare the school-based ap-
proach to the normal approach.

2. METHODOLOGY
2.1 ASSISTments Tutoring System
In order to proceed with our research, we used a large amount
of data coming from the ASSISTments platform. ASSIST-
ments 1 is a web-based Intelligent Tutoring System provided
for free by Worcester Polytechnic Institute. It is intended
for application to middle school mathematics where teachers
can use a predefined set of contents or can create their own.
The system provides students with the right assistance while
assessing their knowledge. When students use the platform
to work on problems assigned to them by their teachers, they
receive immediate feedback as to whether their answers are
correct or not. If they are right, they can proceed to the
next problem, if not, the system provides them with scaf-
folding exercises which are sub-components of the original
problem to help students master the required skills. Once

1www.assistments.org

those skills have been acquired, the student is directed back
to the original problem to have another try. Then, after
correctly answering this problem, they move on to the next
one. Questions in the ASSISTments platform are related
to specific skills, which makes tracking student performance
more precise. On the other hand, teachers get full reports on
student activities and their performance. That allows them
to identify common mistakes and problems and find out who
struggled to solve the problems; all of this can be done even
before meeting their students in the classroom [9].

Figure 1: Example of an ASSISTments 1 problem
where the student answered incorrectly, and is thus
led to solve a scaffolding problem. The student can
request a few hints from the system.

2.2 Data Acquisition
The gathered data consists of action log files representing
click-stream interactions of students with the ASSISTments
software during the period 2004-2007. We count 942,816 ac-
tions stored in the log files coming from different types of
student interactions, such as, requesting help, answering a
question or even revealing a hint. Each action is specified
by a set of recorded information, and those actions were car-
ried out by a group of 591 students from 4 different schools
which used ASSISTments. Several other items of informa-
tion relating to these students were recorded, like their high
school course-taking, college enrollment, and first job out of



college. This dataset contains no less than 3765 problems
related to a complete set of 93 skills.

2.3 Features Exploration
The dataset contains 80 features, some of which were gener-
ated following a discovery with models approach, including
student knowledge prediction, and student behavioural fea-
tures and affects. We also used other features that are di-
rectly determined by student interactions with the software:

• Number of problems solved within the system

• Time taken to answer a question

• Number of original and scaffolding problems

• Correctness in original problems and scaffolding prob-
lems

• Correctness overall

• Number of hints used as well as ”bottom hint” usage

• Number of help requests done as first attempts

• School id of the student

2.4 Discovery with models
Several models have already been used to capture some stu-
dent behaviours or to predict their knowledge. In fact, for
many years, predicting student knowledge was an active field
of research [5, 13, 15, 7] that has been characterized by the
emergence of Bayesian Knowledge Tracing (BKT) [5] as one
of the most used models. Indeed, BKT is able to estimate a
student’s latent knowledge of a specific skill given previous
observable performances. It runs continuously and for each
student’s attempt it measures the probability that the stu-
dent knows the involved skill. In its classic formulation it
has 4 parameters that are recalculated for each new skill: L0,
T, G, S where L0 is the probability that the student already
knows the skill before even the first try; T is the probabil-
ity that the student learns the skill when he applies it; G
is the probability that the student guesses the correct an-
swer without really knowing it and S is the probability that
the student slips and answers incorrectly even if he knows
the answer. The BKT model used in this dataset has its
parameters fitted using a brute-force grid search [3].

Along with predicting student knowledge, different models
were developed in order to estimate student affects and dis-
engaged behaviours. Research such as [11] has produced 4
affective state detectors: Boredom, Engaged Concentration,
Confusion, and Frustration. The disengaged behaviours ap-
pear in the form of an off-task attitude, gaming the system
and carelessness. To build these models, field observations
were recorded when students used the ASSISTments soft-
ware. Then the recorded data was synchronized with the
internal log data of the system, resulting in an automated
model that can be used to replace the in-field experiments.

2.5 Feature Transformation and Selection
To make the predictions relating to student enrollment in a
STEM career, we needed to change the granularity of our
data from the interaction level to the student level. To this

end, we took the average of the selected features across all
actions for each student. Picking the right features was done
using univariate feature selection, only keeping features that
have a strong relationship with the predicted variable. The
results of the selection process are shown in Table 1

Table 1: Univariate Features Selection
STEM
Career

Mean Std F-Value

Avg Bored
0 0.252 0.033 2.90e-05

p=0.991 0.252 0.031

Avg Bottom hint
0 0.046 0.035 10.811

p<0.011 0.034 0.029

Avg Carelessness
0 0.12 0.065 18.207

p<0.0011 0.15 0.078

Avg Confused
0 0.106 0.038 0.013

p=0.9101 0.105 0.035
Avg Correct
Original

0 0.43 0.156 11.458
p<0.0011 0.485 0.176

Avg Correct
Scaffold

0 0.584 0.106 4.494
p<0.051 0.606 0.101

Avg Correct
0 0.417 0.152 16.516

p<0.0011 0.471 0.144
Avg Engaged
Concentration

0 0.647 0.03 1.209
p=0.2711 0.650 0.026

Avg Frustration
0 0.127 0.047 1.834

p=0.1761 0.121 0.052

Avg FirstHelpRequest
0 0.285 0.066 1.126

p=0.2881 0.292 0.071

Avg Gaming
0 0.113 0.124 4.115

p<0.051 0.088 0.105

Avg Hint
0 0.266 0.141 14.108

p<0.0011 0.214 0.124

Avg Knowledge
0 0.224 0.135 16.881

p<0.0011 0.283 0.162

Avg Off-Task
0 0.216 0.082 0.069

p=0.7921 0.219 0.074

Avg Original
0 0.298 0.125 8.904

p<0.011 0.337 0.139

Avg Scaffold
0 0.418 0.114 0.573

p=0.4491 0.426 0.118

Avg Time Original
0 64.38 34.18 0.946

p=0.3311 67.82 38.16

Avg Time Scaffold
0 32.51 17.16 0.416

p=0.5181 33.64 17.99

Avg Time Taken
0 40.84 21.09 2.445

p=0.1181 44.25 23.51

Nb Problems
0 236.3 139.5 1.754

p=0.1851 255.1 143.9

After running the test we observed that only some features
have a strong relationship with the predicted variable. In
fact, correctness is a strong predictor not only in this study
but also in previous research focusing on college enrolment
[18, 14]. This is more emphasised when we look at the cor-
rectness in the original problems, where the difference in
the mean value is higher than the mean correctness in scaf-
folding problems. This is due to the fact that scaffolding
questions aim to help the student acquire the skill and help
him/her solve the original problem. In a way, having higher
correctness in original problems gives us more insight about
the skills of the student. Another strong predictor is the



average of original problems, since it is the proportion of
original problems over the total number of problems done
by the student. A higher proportion of original problems
translates to less of a ”learning phase” involving scaffolding
questions.

One interesting feature is the hint functionality usage. Hints
give the student some advice on how to solve a problem
while explaining the skill. That’s why students with high
hint requests are more likely to pursue a non-STEM career.
Furthermore, bottom hints explain the problem from its ba-
sic notions. They are the lowest level of help, and that’s
why they are used less often, but the difference between the
two groups of students is still significant. Extensive hints us-
age has been reported as a detector for gaming the system
behaviour [1], which is another strong predictor for student
enrollment in a STEM career. Students who loose interest
in STEM have higher mean values in gamin the system.

Additional features that can be good predictors are careless-
ness and knowledge estimation. Similarly to STEM major
predictions [14], the carelessness of students seems to in-
crease when they are going to continue in a STEM career,
which is a non-intuitive finding shared by the two pieces of
research. Finally the average knowledge of a student is an
estimation of his/her skills and to what extent he mastered
the involved skill. It’s the most straightforward predictor,
since more knowledge means that the student has more ap-
titude to pursue a STEM career without serious problems.

However, we expected some of the features to be important
while in reality they are not. Affects and behaviours such
as boredom, confusion, engaged concentration, off-task be-
haviours and frustration are not good predictors for a STEM
career. The same is true when predicting STEM college ma-
jor enrolment [14]. Surprisingly enough, the difference in the
time needed to answer questions is not statistically signifi-
cant enough to be considered as a predictor. Although we
assumed that unsuccessful students tended to use more time
in order to give their answers, this was not the case. This
can be explained by the fact that successful students might
privilege taking their time to answer with certainty over an-
swering quickly but without verification. This is valid for
both original or scaffolding problems where students that did
not pursue a STEM career answer faster than their counter
parts.

2.6 Approaches
Once the useful features were selected, we transformed the
dataset to prepare for the first approach, which consists of
studying the effect of the school on the student’s career out-
come. If we put the student’s performance in the context
of their surroundings, which, in this case, is the school, we
might grasp some important information about whether or
not the student is willing to pursue a STEM career. So, the
first approach, called the school-based approach, is to sepa-
rate students by their schools, and then measure the z-score
of all students’ features school by school. This gives us a
set of transformed data describing student data relative to
their peer school mates. That was straightforward because
none of the students in the dataset had changed their school
during their usage of ASSISTments. On the other hand, the
normal approach is to simply use the features without any

similar transformation.

2.7 Optimization and genetic programming
Since we compare two different approaches independently,
we want to find the most adequate machine learning method
with the best hyper-parameters for each approach. And in
order to find this ”Pipeline”, we use genetic programming
as our tool for searching. We do not compare two machine
learning methods but rather try to give each approach its
best shot.

Briefly, genetic programming is a technique derived from
genetic algorithms in which instructions are encoded into
a population of genes. The goal is to evolve this popula-
tion using genetic algorithm operators to constantly update
the population until a predefined condition is met. The
most common ways of updating the population are to use
two famous genetic operators called crossover and mutation.
Crossover is used to diversify the research in the research
space by taking some parts of the parent individuals and
mixing them into the offspring. On the other hand, muta-
tion is the process of updating only some part of an individ-
ual and it is used to maintain the actual diversity, in other
words, intensify the research in a certain area of the research
space. The population is evolving from one generation to an-
other while keeping the fittest individuals in regard to one or
many objectives. When using genetic programming for ma-
chine learning optimization, we use the pipeline score as the
objective function; the pipeline accuracy score is an example
of an objective function which has to be maximized.

In our case, we used genetic programming by searching through
a multitude of machine learning techniques and their respec-
tive hyper-parameters to find out which combination gives
the best results. To achieve our goals we used the python
library TPOT [10]. However, in order to use genetic pro-
gramming there are several hyper-parameters that we need
to initialize.

Table 2: Genetic Programming Hyper-parameters

Generations count
Population

size
Offspring

size
Scoring

200 150 100 ROC AUC
Mutation

rate
Crossover

rate
Internal Cross

Validation
0.8 0.2 5-fold

Table 2 explores the principal hyper-parameters that we
have to initialize. The Generations count is the number of
iterations of the whole optimization process. A bigger num-
ber gives better results but also takes more time to finish.
We also can fix a maximum amount of time for the whole
process. The Population size is the number of individuals
which will evolve in each iteration. The offspring size is the
number of individuals that are supposed to be generated
from the previous population using the genetic algorithm
operators. After executing the operators and generating the
offspring, the individuals from the population and the off-
spring compete to survive and be part of the next popula-
tion. When the individuals compete against each other, we
only keep the fittest ones, meaning the individuals with the
best score. The method used to measure the score is defined



in the scoring hyper-parameters. We used the Area Under
the Receiver Operating Characteristic Curve (ROC AUC)
as our scoring method. That means we only keep the indi-
viduals (thus the pipelines) which have highest ROC AUC
values. Mutation and Crossover rates are the probabilities
of having respectively a Mutation or a Crossover operation
to evolve one or more individuals. We set them to be a
80% chance of having a mutation against a 20% of having
a crossover operation. Finally, the TPOT tool gives us the
possibility to cross-validate our pipelines internally, there-
fore we set the number of folds to 5.

We ran two separate processes for each approach but with
the same hyper-parameters and at the end of the optimiza-
tion process we ended up with two different machine learning
techniques in two different pipelines. For the school-based
approach we use a Gaussian Naive Bayes classifier and for
the normal approach we found that a Random Forest Clas-
sifier was the most efficient. Before running the optimiza-
tion phase we did split the data into training and validation
data that we hold for the final validation at the end of the
process. This split was stratified using the label (STEM Ca-
reer) and the school, in order to respect the proportions of
school diversity and STEM outcome. Furthermore, within
the process of searching with genetic programming we have
an internal cross-validation mechanism. Finally, once we
had trained our models, we tested them on the validation
data that had been kept out of the optimization process.

As shown in Table 3, the approach in which we z-scored
the student features within their respective schools gave us
a statistically significant better result than the normal ap-
proach with an AUC of 0.604 while the result of the normal
approach is about 0.494. But in the case of RMSE, the nor-
mal approach had a better score of 0.425 compared to 0.476
achieved by the school-based approach.

Table 3: Validation score of both pipelines
School-based Normal approach

ROC AUC 0.604 0.494
RMSE 0.476 0.425

Once we know which methods and parameters to use we
proceed to train a cross-validated model using them. We
use the same features as for the genetic programming, and
we conducted a 10-fold stratified cross-validation training.
As previously, the folds were stratified, where we respect the
proportions of the label (STEM Career) and the difference
in schools in each fold.

Table 4 shows the mean of the cross-validated values for both
models. This time the school-aggregated model showed an
increase of RMSE to over 0.54 compared to its counter part.
On the other hand, the normal approach attained 0.521 in
ROC AUC score, but was still lower than the score of the
school model (0.601).

Table 4: Cross-validated scores for both approaches
School-based Normal approach

ROC AUC 0.601 0.521
RMSE 0.546 0.45

Figure 2 shows more about the cross-validated ROC AUC
scores. The values of the normal approach are spread from
the minimum of 0.36 to the maximum of 0.65 with 25% of
the values exceeding 0.63 and another 25% are being less
than 0.44. On the other hand, the school-based approach is
less diverse, since its minimum is 0.47 and maximum is 0.70.
Half of the values exceed 0.59 and 25% of them are above
0.67.

Figure 2: Cross-validated scores of ROC AUC for
both approaches.

Now when comparing the RMSE scores of the two approaches,
we clearly see in Figure 3 that the normal approach is al-
most perfectly distributed around the minimum of 0.45 and
the maximum of 0.47. While the school-based approach is
spread from the minimum of 0.47 to the maximum of 0.6.
25% of its values are under 0.51. Half of the data is above
0.555 and 25% of it is superior to 0.585.

Figure 3: Cross-validated scores of RMSE for both
approaches.

Even if the difference between the two approaches is statis-
tically significant (p<0.01), the school-based approach has
better AUC, while the normal approach has a lower RMSE,
thus we cannot clearly confirm that the school-based ap-
proach has radically better results. The gain in terms of
AUC is significant, but it suffers from a relatively high RMSE.

3. DISCUSSION AND CONCLUSION



In this paper, we aimed at longer term predictions of whether
or not students will pursue a STEM career. We used student
knowledge estimates, affects and disengaged behaviours, mixed
with features from the dataset. Our approach was to take
student performance and detector values and put them in
context relative to their peer school mates. We wanted
to investigate if the data of school mate can improve the
model’s predictions. As we looked to compare two differ-
ent approaches rather than machine learning methods, we
used genetic programming to find the best machine learning
pipeline for both the school-based approach and the normal
approach, resulting in a Random Forest Classifier for the
normal approach and a Gaussian Naive Bayes classifier for
the school-based approach.

The univariate features selection process resulted in the same
assertions found before when predicting STEM major college
enrollment, further strengthening the features choice. Af-
fects like Boredom, Confusion, Engaged concentration and
Frustration are not good predictors in either model. Simi-
larly, disengaged behaviours such as off-task behaviour are
not a good predictor either. Furthermore, Hint usage is a
good detector of students having trouble with the assign-
ments and loosing interest in the subject, which ultimately
results in pursuing a non-STEM career. We have separated
the Hint usage into bottom hint which is the lowest level
of hint and the regular hint, and both have a strong rela-
tionship with the predicted variable. Previous study showed
that gaming the system behaviour is correlated to turning
away from STEM college enrollment [14]. Average correct-
ness, whether for scaffolding or original problems, shows a
statistically significant difference between students that are
in STEM careers and those who are not. Showing also that
it’s better to have good scores in original problems, as they
are the principal exercises necessary to complete the task,
while scaffolding problems are meant to explain the skill
gradually. Finally, student knowledge modelled by Bayesian
Knowledge Tracing is a very good predictor, since being
successful in solving problems is a trait that is well-known
among the STEM field workforce.

Aggregating within the school gave us better ROC AUC
scores, but suffered from a high RMSE, suggesting that the
improvement is not so big between both approaches. Per-
haps, thinking about how well a student performs compared
to his peers in the same school may not have an impact on
the student’s final decision to pursue a STEM field career.
But if we push the analysis further to aggregate student per-
formances within their own classroom or maybe compared
to students that have the same teacher we can grasp some
useful information as to whether a teacher had an impact in
reigniting the student’s passion for STEM. In fact, schools
are just institutions where teachers do their job, and in the
field it’s the professors who are in contact with the students,
and every professor has his/her own pedagogy and way of
teaching. It would be interesting to compare student per-
formances within the finer-grained entity which is the class-
room. There the comparison might be more fair as the stu-
dents share the same small environment, exercises and are
tough in the same way. Previous research showed that ag-
gregating students data within the classroom can improve
the knowledge modelling [21], so it might be a promising

research area.
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